

Eye Tracking Plan

Konstella App

Introduction

Konstella app is a communication tool used by many schools and parents. It is important to give the app the correct maintenance and respond to user's needs and demands in a timely manner.

Purpose and Scope

The Eye Tracking Plan is a subcomponent of the Research Project for Konstella app. The purpose of the Eye Tracking Plan is to explain how to combine eye tracking with usability testing in order to understand how users interact with Konstella app.

Eye Tracking

It is a technology that helps to understand what may be interesting, engaging or confusing for participants by capturing eye behavior in response to a visual stimulus. An eye tracker will be used to capture eye movements from each participant while interacting with Konstella app.

Usability Testing

It is a research technique that evaluates a product or service by testing it with representative users. The goal is to identify any usability problems, collect qualitative and quantitative data and determine the participant's satisfaction with the product.

Combining Eye Tracking and Usability Testing

Eye tracking used in combination with usability testing helps the moderator by supporting findings that are based on behavioral measures and user self-report, and by filling in the gaps between observable events and participant comments. At the end, the research study will benefit because it shows a more complete picture of the interaction.

Research Question

This Eye Tracking Plan supports the following research questions about the feed of Konstella app:

- What is the participants' impression of the visual design of Konstella app?

- Can participants navigate to where they want to go and accomplish their tasks quickly and efficiently?

Learning Expectations

Eye tracking will help the moderator to learn about what parts of the app layout capture the participants' attention by creating heat maps visualizations to understand the number of times and the duration participants spend analyzing something on the app.

In addition, gaze plot visualizations can be created to learn about which visual elements (buttons, icons, text) of the app participants were looking at, and which of those repeatedly capture their attention while performing tasks.

Finally, the moderator can learn if the participants are able to accomplish their tasks quickly and efficiently by using the correct visual components on the app (filters, buttons and icons) by watching gaze replay visualizations.